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Abstract
This work continues a program to systematically generalize the Skyrme Hartree-Fock method for

medium and heavy nuclei by applying effective field theory (EFT) methods to Kohn-Sham density

functional theory (DFT). When conventional Kohn-Sham DFT for Coulomb systems is extended

beyond the local density approximation, the kinetic energy density τ is sometimes included in

energy functionals in addition to the fermion density. However, a local (semi-classical) expansion

of τ is used to write the energy as a functional of the density alone, in contrast to the Skyrme

approach. The difference is manifested in different single-particle equations, which in the Skyrme

case include a spatially varying effective mass. Here we show how to generalize the EFT framework

for DFT derived previously to reconcile these approaches. A dilute gas of fermions with short-range

interactions confined by an external potential serves as a model system for comparisons and for

testing power-counting estimates of new contributions to the energy functional.
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I. INTRODUCTION

Density functional theory (DFT) is widely used in many-body applications with Coulomb
interactions because it provides a useful balance between accuracy and computational cost,
allowing large systems to be treated in a simple self-consistent manner. In DFT, the particle
density ρ(x) plays a central role rather than the many-body wave function. DFT has the
generality to deal with any interaction but has had little explicit impact on nuclear structure
phenomenology so far (see, however Refs. [1, 2, 3, 4]), although the Skyrme-Hartree-Fock
formalism is often considered to be a form of DFT [5]. In previous work, effective field theory
(EFT) methods were applied in a DFT framework, with the ultimate goal of calculating
bulk observables for medium to heavy nuclei in a systematic fashion. The present work
takes another step toward this goal by generalizing the EFT framework for DFT to include
the kinetic energy density in the same way it appears in the Skyrme approach.

Kohn-Sham (KS) DFT maps an interacting many-body system to a much easier-to-solve
non-interacting system. Hohenberg and Kohn proved that the ground-state density ρ(x)
of a bound system of interacting particles in some external potential v(x) determines this
potential uniquely up to an additive constant [6]. They showed that there exists an energy
functional E[ρ] that can be decomposed as

E[ρ(x)] = FHK[ρ(x)] +

∫
d3x v(x)ρ(x) , (1)

where the functional FHK[ρ] is called the HK free energy, and is universal in the sense that
it has no explicit dependence on the potential v(x). A variational principle, formulated
in terms of trial densities rather than trial wavefunctions, ensures that the functional E[ρ]
is a minimum equal to the ground-state energy when evaluated at the exact ground-state
density.

The free-energy functional FHK[ρ] can be further decomposed into a non-interacting ki-
netic energy Ts[ρ], the Hartree term EH [ρ], and the exchange-correlation energy Exc[ρ] [7]:

FHK[ρ] = Ts[ρ] + EH [ρ] + Exc[ρ] . (2)

Kohn-Sham DFT [7, 8, 9, 10, 11] allows Ts[ρ] to be calculated exactly [see Eq. (30)], which
efficiently treats a leading source of non-locality in the energy functional. Given the Hartree
and exchange-correlation functionals, the solution of the interacting problem at zero tem-
perature reduces to solving a single-particle Schrödinger equation,

[−
∇2

2M
+ vs(x)]ψβ(x) = εβψβ(x) , (3)

for the lowest A orbitals ψβ(x) (including degeneracies),1 where the effective local external
potential vs(x) is given by

vs(x) = v(x) +
δEH [ρ]

δρ(x)
+
δExc[ρ]

δρ(x)
. (4)

1 This is only true in the absence of pairing. See Ref. [12] for a discussion on generalizing DFT/EFT to

accommodate pairing correlations.

2



The wave functions for the occupied states in this fictitious external potential vs(x) generate
the same physical density ρ(x) through ρ(x) ≡

∑
β |ψβ(x)|2 as that of the original, fully

interacting system in the external potential v(x).
The practical problem of DFT is finding a useful explicit expression for Exc[ρ] [7, 9, 10, 11].

For Coulomb systems, the conventional procedure is to approximate Exc in the local density
approximation (LDA) by taking the exchange-correlation energy density at each point in
the system to be equal to its value for a uniform interacting system at the local density
(which is calculated numerically) [7], and then to include semi-phenomenological gradient
corrections [7, 13]. These gradient corrections have become steadily more sophisticated.
The initial attempts at gradient corrections violated a sum rule [7, 11], which was fixed by
the generalized gradient expansion approximation (GGA), where spatial variations of ρ(x)
are constrained by construction to conform with the sum rule [14]. To further improve the
exchange-correlation functional, the semi-local kinetic energy density τ(x) ≡

∑
β |∇ψβ(x)|2

was built into the GGA formalism to construct meta-generalized gradient approximations
(Meta-GGA) [15]. However, in practice, the kinetic energy density is replaced by its local
expansion in terms of the density ρ(x) and its gradients [10] so that the energy is treated
as a functional of the density alone. The Kohn-Sham single-particle equation still takes the
form of Eq. (3).

The Skyrme-Hartree-Fock approach to nuclei is also based on energy functionals and
single-particle equations, which suggests a link between the traditional DFT and nuclear
mean-field approaches [5, 16, 17]. In calculations with the usual density-dependent Skyrme
force, the energy density for spherical, even-even N = Z nuclei takes the form of a local
expansion in density [18, 19],

ESK(x) =
1

2M
τ(x) +

3

8
t0[ρ(x)]2 +

1

16
t3[ρ(x)]2+α +

1

16
(3t1 + 5t2)ρ(x) τ(x)

+
1

64
(9t1 − 5t2)|∇ρ(x)|2 −

3

4
W0ρ(x)∇ · J(x) +

1

32
(t1 − t2)[J(x)]2 , (5)

(see Ref. [20] for a more general treatment). The density ρ, kinetic density τ , and the
spin-orbit density J are expressed as sums over single-particle orbitals ψβ(x):

ρ(x) ≡
∑

β

|ψβ(x)|2 , τ(x) ≡
∑

β

|∇ψβ(x)|2 , J(x) ≡
∑

β

ψ†
β(x)(∇×σ)ψβ(x) , (6)

where the sums are over occupied states. The ti’s, W0, and α are generally obtained from
numerical fits to experimental data. Varying the energy with respect to the wavefunctions
leads to a Schrödinger-type equation with a position-dependent mass term [18, 19]:

(
−∇

1

2M∗(x)
∇ + U(x) +W (x)

)
ψβ(x) = εβ ψβ(x) , (7)

where M∗(x) is given by

1

2M∗(x)
=

1

2M
+

[
3

16
t1 +

5

16
t2

]
ρ(x) , (8)

and W (x) is a spin-orbit potential (see Ref. [20] for details). The appearance of M∗(x) and
W (x) are a consequence of not expanding τ and J in terms of ρ.

3



The Skyrme approach has had many phenomenological successes over the last 30 years
and, generalized to include the effects of pairing correlations, continues to be a major tool
for analyzing the nuclear structure of medium and heavy nuclei [21, 22, 23, 24]. The form of
the Skyrme interaction was originally motivated as an expansion of an effective interaction
(G-matrix) in the medium [25]. Negele and Vautherin made the connection concrete with
the density matrix expansion method [26], but there has been little further development
since their work. Many unresolved questions remain, which become acute as one attempts
to reliably extrapolate away from well-calibrated nuclei and to connect to modern treatments
of the few-nucleon problem. Why are certain terms included in the energy functional and
not others? What is the expansion parameter(s)? How can we estimate uncertainties in the
predictions? Are long-range effects included adequately? Can we really include correlations
beyond mean-field, as implied by the DFT formalism? We turn to effective field theory to
address these questions, using a DFT rather than a G-matrix approach as in Ref. [27].

Effective field theory (EFT) promises a model-independent framework for analyzing low-
energy phenomena with reliable error estimates [28, 29, 30, 31, 32]. In Ref. [33], an effective
action framework was used to merge effective field theory with DFT for a dilute gas of
identical fermions confined in an external potential with short-range, spin-independent in-
teractions (see also Refs. [34, 35]). The calculations in Ref. [33] used the results from the
EFT treatment of a uniform system in Ref. [36] in the local density approximation. In the
present work, we extend the formalism to include the kinetic energy density as a functional
variable, leading to Kohn-Sham equations with position-dependent M∗’s (see Ref. [37] for
an earlier discussion of such an extension to Kohn-Sham DFT). We take a (small) step
beyond the LDA by evaluating the full τ dependence in the Hartree-Fock diagrams with
two-derivative vertices, which leads to an energy expression similar to the standard Skyrme
energy (excepting the spin-orbit parts).

The plan of the paper is as follows. In Sect. II, we extend the EFT/DFT construction
for a dilute Fermi system to include a source coupled to the kinetic energy density operator.
A double Legendre transformation, carried out via the inversion method, yields an energy
functional of ρ and τ , and Kohn-Sham equations with M∗(x). In Sect. III, we illustrate the
formalism with numerical calculations for a dilute Fermi system in a trap, including power-
counting estimates. Section IV is a summary. For the bulk of the paper, we will restrict our
discussion to spin-independent interactions but in Sec. IID the extension to more general
forces is discussed.

II. EFT/DFT WITH THE KINETIC ENERGY DENSITY

A dilute Fermi system with short-range interactions is an ideal test laboratory for effec-
tive field theory at finite density, but it is also directly relevant for comparison to Skyrme
functionals. We describe such a system using a general local Lagrangian for a nonrela-
tivistic fermion field with spin-independent, short-range interactions that is invariant under
Galilean, parity, and time-reversal transformations [32, 36]:

L = ψ†
[
i∂t +

−→
∇

2

2M

]
ψ −

C0

2
(ψ†ψ)2 +

C2

16

[
(ψψ)†(ψ

↔

∇2ψ) + h.c.
]

+
C ′

2

8
(ψ

↔

∇ψ)† · (ψ
↔

∇ψ) + · · · , (9)
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where
↔

∇ =
←−
∇ −

−→
∇ is the Galilean invariant derivative and h.c. denotes the Hermitian con-

jugate. The terms proportional to C2 and C ′
2 contribute to s-wave and p-wave scattering,

respectively, while the dots represent terms with more derivatives and/or more fields. To
describe trapped fermions, we add to the Lagrangian a term for an external confining po-
tential v(x) coupled to the density operator v(x)ψ†ψ [33]. For the numerical calculations,
we take the potential to be an isotropic harmonic confining potential,

v(x) =
1

2
mω2 |x|2 , (10)

although the discussion holds for a general non-vanishing external potential. This La-
grangian can be simply generalized to include spin-dependent interactions, as described in
Sec. IID, although the complete set of terms grows rapidly with the number of derivatives.

A. Effective Action and the Inversion Method

We introduce a generating functional in the path integral formulation with L from Eqs. (9)
and (10) supplemented by c-number sources J(x) and η(x), coupled to the composite density
operator and to the kinetic energy density operator, respectively,

Z[J, η] = eiW [J,η] =

∫
DψDψ† ei

∫
d4x [L+ J(x)ψ†(x)ψ(x) + η(x)∇ψ†(x)·∇ψ(x)] . (11)

For simplicity, normalization factors are considered to be implicit in the functional integra-
tion measure [38, 39]. The fermion density in the presence of the sources is

ρ(x) ≡ 〈ψ†(x)ψ(x)〉J , η =
δW [J, η]

δJ(x)
, (12)

and the kinetic energy density is given by

τ(x) ≡ 〈∇ψ†(x) · ∇ψ(x)〉J , η =
δW [J, η]

δη(x)
, (13)

where functional derivatives are taken keeping the other source fixed. The effective action
is defined through the functional Legendre transformation

Γ[ρ, τ ] = W [J, η]−

∫
d4x J(x)ρ(x) −

∫
d4x η(x)τ(x) , (14)

which implies that Γ has no explicit dependence on J and η.
As in Ref. [33], we choose finite-density boundary conditions that enforce a given particle

number A by hand, so that Γ and W are functions of A and variations over ρ(x) and τ(x)
conserve A. This is naturally achieved by working with a fixed number of Kohn-Sham
orbitals, as seen below. By limiting ourselves to time independent sources and densities, we
can factor out a ubiquitous time factor corresponding to the time interval over which the
source is acting, and write [33]

Γ̃[ρ, τ ] ≡ Γ[ρ, τ ]×

[∫ ∞

−∞

dt

]−1

= −E[ρ, τ ] . (15)
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and similarly with W [J, η] and the expansions below. The effective action has extrema at
the possible quantum ground states of the system, and when evaluated at the minimum is
proportional (at zero temperature) to the ground-state energy [38, 39, 40]. In particular,
Eq. (15) defines an energy functional E[ρ, τ ], which when evaluated with the exact ground-
state density ρ and kinetic energy density τ , is equal to the ground-state energy.

If we take functional derivatives of Eq. (14) with respect to J(x) and η(x), and then
apply Eqs. (12) and (13) [33], we obtain two equations that can be written in matrix form
as

∫
d3y




δρ(y)
δJ(x)

δτ(y)
δJ(x)

δρ(y)
δη(x)

δτ(y)
δη(x)







δΓ̃[ρ, τ ]
δρ(y)

+ J(y)

δΓ̃[ρ, τ ]
δτ(y)

+ η(y)


 = 0 . (16)

The invertibility of the transformation from {J, η} to {ρ, τ} implies that the matrix in
Eq. (16) has no zero eigenvalues, which means that the elements of the vector vanish iden-
tically for each x, so that

δΓ̃[ρ, τ ]

δρ(x)
= −J(x) ,

δΓ̃[ρ, τ ]

δτ(x)
= −η(x) . (17)

Thus, the effective action when evaluated at the exact ground state density and kinetic
energy density is an extremum when the sources are set to zero, which corresponds to the
original (source-free) system. The convexity of Γ implies that the energy (equal to minus

Γ̃[ρ, τ ] at the extremum) is a minimum.2

These properties are analogous to conventional applications of effective actions where the
Legendre transformation is with respect to one of the fields rather than a composite operator
[42, 43, 44]. A possible complication in the present case would be if new divergences arose
in W [J, η], which generally happens when adding a source coupled to a composite operator
[45, 46]. However, that is not the case here [12]. On the other hand, sources coupled to
operators such as ψψ + ψ†ψ†, which arise when considering pairing, will introduce new
divergences, including for the kinetic energy density. This issue will be considered elsewhere
[12].

To carry out the inversion and Legendre transformation, we apply the inversion method
of Fukuda et al. [38, 39, 41, 47, 48, 49]. This method applies to any system that can
be characterized by a hierarchy, which we organize by introducing a parameter λ that is
ultimately set to unity. This parameter can label different orders in a coupling constant
expansion (e.g., powers of e2 for the Coulomb interaction), in a large N expansion, or in an
effective field theory expansion. Here we apply the latter, and associate powers of λ with
the orders in the dilute EFT expansion derived in Refs. [36] and [33]. The effective action
is given a dependence on λ

Γ̃ = Γ̃[ρ, τ, λ] , (18)

which is treated as an independent variable. The Legendre transformation defining Γ̃ follows

2 In Ref. [41], a proof is given of the invertibility of the Legendre transformation for the Euclidean version

of the functions. The proof extends directly to our Minkowski functions with any number of sources, as

long as they are coupled linearly.
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LO: NLO: +(a) (b) ()
NNLO: + +(d) (e) (f)
+ + + +(g) (h) (i) (j)

FIG. 1: Hugenholtz diagrams for a dilute Fermi gas through next-to-next-to-leading-order (NNLO)

in an EFT expansion.

from Eq. (14):

Γ̃[ρ, τ, λ] = W̃ [J, η, λ]−

∫
d3x J(x) ρ(x)−

∫
d3x η(x) τ(x) , (19)

where J and η depend on λ as well as being functionals of ρ and τ .
Now we expand each of the quantities that depend on λ in Eq. (19) in a series in λ [33],

treating ρ and τ as order unity, and substitute the expansion for J and η into the expansion

for W̃ . Equating terms with equal powers of λ on both sides of Eq. (19) after carrying out

a functional Taylor expansion of W̃ [J, η] about J0 and η0 gives a series of equations relating

the Γ̃l, W̃l, Jl, and ηl, where the subscript l indicates the power of λ. These equations allow
the Γ̃l’s to be constructed recursively (see Ref. [33] for explicit expressions). Since ρ and τ
are independent of λ, the sources for any l satisfy

Jl(x) = −
δΓ̃l[ρ, τ ]

δρ(x)
, ηl(x) = −

δΓ̃l[ρ, τ ]

δτ(x)
, (20)

which is just the term-by-term expansion of Eq. (17). All of the Jl’s and ηl’s as defined
here are functionals of ρ and τ , and this functional dependence will be understood even if
not explicitly shown from now on (and functional derivatives with respect to ρ will have

τ held fixed, and vice versa). We identify the W̃l’s for l ≥ 1 in the present case with the

diagrammatic expansion in Fig. 1 [33, 36]. That is, W̃1 is given by diagram (a), W̃2 by

diagrams (b) and (c), and W̃3 by diagrams (d) through (j).
The zeroth-order equation from Eq. (19) is

Γ̃0[ρ, τ ] = W̃0[J0, η0]−

∫
d3x J0(x) ρ(x)−

∫
d3x η0(x) τ(x) . (21)
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The corresponding zeroth order expansion of Eqs. (12) and (13) is

ρ(x) =
δW̃0[J0, η0]

δJ0(x)
, τ(x) =

δW̃0[J0, η0]

δη0(x)
, (22)

(this also follows by taking functional derivatives of Eq. (21) with respect to ρ and τ and using
invertibility again, see [33]). Note that these are the exact ground-state densities. Because ρ
and τ are treated as order unity, this is the only equation in the expansion of Eqs. (12) and
(13) in which they appear. Thus, the sources J0(x) and η0(x) are particular functions that
generate the expectation values ρ and τ from the noninteracting system defined by λ = 0.
(The existence of J0(x) and η0(x) is the heart of the Kohn-Sham approach.) The inversion
method achieves this end by construction.

The exponent in the non-interacting generating functional Z0[J, η] is quadratic in the
fermion fields,

∫
d4x ψ†

[
i∂t +

∇ 2

2M
− v(x) + J0(x)

]
ψ +

∫
d4x η0(x)∇ψ† · ∇ψ (23)

=

∫
d4x ψ†

[
i∂t +

∇ 2

2M
− v(x) + J0(x)−∇ · η0(x)∇

]
ψ ,

which leads us to define the Green’s function G0
ks of the Kohn-Sham non-interacting system.

This Green’s function satisfies
(
i∂t +∇ ·

1

2M∗(x)
∇− v(x) + J0(x)

)
G0

ks(xt,x
′t′) = δ3(x− x′)δ(t− t′) (24)

with finite density boundary conditions [50] and a position-dependent effective mass defined
by

1

2M∗(x)
≡

1

2M
− η0(x) . (25)

Kohn-Sham orbitals arise as solutions to

[−∇ ·
1

2M∗(x)
∇+ v(x)− J0(x)]ψk(x) = εkψk(x) , (26)

where the index k represents all quantum numbers except for the spin. Note that Eq. (26)
is in the form of the Skyrme single-particle equation [Eq. (7)] (without the spin-orbit part).

The spectral decomposition of G0
ks in terms of the Kohn-Sham orbitals is [33]

iG0
ks(xt,x

′t′) =
∑

k

ψk(x)ψ∗
k(x

′) e−iεk(t−t′)[θ(t− t′) θ(εk − εF)− θ(t′ − t) θ(εF − εk)] . (27)

It follows that W̃0[J0, η0] ∝ Tr ln(G0
ks)

−1 (since it is quadratic it yields a simple determinant),
corresponding to the system without interactions, and can be written explicitly in terms of
the single-particle Kohn-Sham eigenvalues as [51]

W̃0[J0, η0] = −ν
∑

εk≤εF

εk , (28)
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where ν is the spin-isospin degeneracy, as expected for a system without interactions. Equa-
tion (22) applied to Eq. (28) [with the help of Eq. (26)] implies that ρ(x) and τ(x) follow
as in Eq. (6) from the orbitals [33]. By using Eq. (28) in Eq. (21) and then eliminating εk
using Eq. (26), the lowest order effective action can be written two ways,

Γ̃0[ρ, τ ] = −ν

occ.∑

k

εk −

∫
d3x J0(x) ρ(x)−

∫
d3x η0(x) τ(x)

= −Ts[τ ]−

∫
d3x v(x) ρ(x) , (29)

where

Ts[τ ] = ν
∑

k

∫
d3x ψ∗

k(x)

(
−
∇2

2M

)
ψk(x) =

ν

2M

∑

k

∫
d3x |∇ψk(x)|2 =

1

2M

∫
d3x τ(x)

(30)
is the total kinetic energy of the KS non-interacting system.

The first-order equation in λ from Eq. (19) is

Γ̃1[ρ, τ ] = W̃1[J0, η0] +

∫
d3x

δW̃0[J0, η0]

δJ0(x)
J1(x) +

∫
d3x

δW̃0[J0, η0]

δη0(x)
η1(x)

−

∫
d3x J1(x) ρ(x)−

∫
d3x η1(x) τ(x)

= W̃1[J0, η0] . (31)

The complete cancellation of the J1 and η1 terms from applying Eq. (22) occurs for the Jl
and ηl terms in the equation for Γ̃l for all l ≥ 1. Thus for a given l, we only need W̃k’s with

k less than or equal to l, and Jk’s and ηk’s with k smaller than l. The W̃k functionals are
constructed using conventional Feynman rules in position space with factors as in Ref. [36],
but with fermion lines representing iG0

ks.
In particular, the LO effective action is given by [33]

Γ̃1[ρ, τ ] = W̃1[J0, η0] =
1

2
ν (ν − 1)C0

∫
d3x G0

ks(x, x
+)G0

ks(x, x
+) . (32)

The density can be directly expressed in terms of the Kohn-Sham Green’s function with
equal arguments as

ρ(x) = −iν G0
ks(x, x

+) , (33)

so that we have

Γ̃1[ρ, τ ] = −
1

2

(ν − 1)

ν
C0

∫
d3x |ρ(x)|2 ≡ Γ̃1[ρ] , (34)

which is minus the Hartree-Fock energy. Using Eq. (20), we obtain

J1(x) =
C0 (ν − 1)

ν
ρ(x) , η1(x) = 0 . (35)
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After canceling the J2 and η2 terms as advertised above, the second-order effective action
is given by

Γ̃2[ρ, τ ] = W̃2[J0, η0] +

∫
d3x

δW̃1[J0, η0]

δJ0(x)
J1(x) +

∫
d3x

δW̃1[J0, η0]

δη0(x)
η1(x)

+
1

2

∫
d3x d3y

δ2W̃0[J0, η0]

δJ0(x) δJ0(y)
J1(x) J1(y) +

1

2

∫
d3x d3y

δ2W̃0[J0, η0]

δη0(x) δη0(y)
η1(x) η1(y)

+

∫
d3x d3y

δ2W̃0[J0, η0]

δJ0(x) δη0(y)
J1(x) η1(y) . (36)

W2[J0, η0] is calculated from the graphs Figs. 1(b) and (c):

W2[J0, η0] = iν(ν − 1)
C2

0

4

∫
d4x d4y G0

ks(x, y)G
0
ks(x, y)G

0
ks(y, x)G

0
ks(y, x)

− iν(ν − 1)2 C
2
0

2

∫
d4x d4y G0

ks(x, x
+)G0

ks(x, y)G
0
ks(y, x)G

0
ks(y, y

+) . (37)

The other terms in Γ̃2 completely cancel against the “anomalous” graph of Fig. 1(c) so that3

Γ2[ρ, τ ] = iν(ν − 1)
C2

0

4

∫
d4x d4y G0

ks(x, y)G
0
ks(x, y)G

0
ks(y, x)G

0
ks(y, x) , (38)

which is equal to the contribution made by the “beachball” diagram [Fig. 1(b)] to the energy
[up to the time factor of Eq. (15)]. This cancellation is proven exactly as in Ref. [33] after
generalizing to the matrix notation of Eq. (16). Calculation of the third-order effective
action in the inversion method similarly leads to cancellation of the “anomalous” graphs in

W̃3 given by Figs. 1(d), (e), and (f), leaving only Fig. 1(g) through (j) as contributors. All

higher orders in Γ̃[ρ, τ, λ] are determined in a similar manner, as described in Refs. [33, 41].
In order to solve for the orbitals in Eq. (26) and to calculate the energy, we need expres-

sions for J0(x) and η0(x). Since J(x) = η(x) = 0 in the ground state, Eq. (17) becomes
a variational principle that, together with Eq. (20), yields self-consistent expressions for J0

and η0 [33]:

J0(x)
∣∣∣
gs

= −
∑

l≥1

Jl(x)
∣∣∣
gs

=
δΓ̃int[ρ, τ ]

δρ(x)

∣∣∣∣∣
gs

, (39)

η0(x)
∣∣∣
gs

= −
∑

l≥1

ηl(x)
∣∣∣
gs

=
δΓ̃int[ρ, τ ]

δτ(x)

∣∣∣∣∣
gs

, (40)

where Γ̃int[ρ, τ ] is the interaction effective action

Γ̃int[ρ, τ ] ≡
∑

l≥1

Γ̃l[ρ, τ ] , (41)

3 This complete cancellation does not occur for long-range forces, or if the zero-range delta functions at the

C0 vertices are regulated by a cutoff rather than by dimensional regularization, as used here.
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and the subscript “gs” refers to the ground-state. (Note that at this stage λ = 1, and
Eqs. (39) and (40) mix all orders of the original inversion-method expansion into the Kohn-
Sham potentials J0 and η0.) A given approximation corresponds to truncating Eq. (41) at
lmax and then carrying out the self-consistent calculation. We refer to lmax = 1 as leading
order, or LO, lmax = 2 as next-to-leading order or NLO, and lmax = 3 as NNLO.

B. EFT for Dilute Fermi Systems

The non-interacting energy density at zero temperature for A particles with spin-
degeneracy ν in volume V can be written as

E0 =
3

5

(
k2

F

2M

)
ρ , (42)

where the density ρ is

ρ =
A

V
= ν

∫
d3k

(2π)3
θ(kF − k) =

νk3
F

6π2
. (43)

For a uniform system, the order-by-order in kFas corrections to Eq. (42) due to interactions
can be calculated in the EFT via the Hugenholtz diagrams in Fig. 1, as described in Ref. [36].

For a dilute Fermi system, the coefficients C0, C2, and C ′
2 can be expressed in terms of

the effective-range parameters by matching to the effective-range expansion for low-energy
fermion-fermion scattering [36]:

C0 =
4πas
M

, C2 = C0
asrs
2
, and C ′

2 =
4πa3

p

M
, (44)

where as (ap) is the s-wave (p-wave) scattering length and rs is the s-wave effective range,
respectively. If the effective range parameters are all of order the interaction range, then
the EFT is said to be natural. In a uniform system at finite density, the mean inter-
particle spacing r0 provides a length scale for comparison; the ratio as/r0 ∼ kFas provides a
dimensionless measure of density, where kF is the Fermi momentum. In the dilute regime,
kFas ≪ 1 serves as an expansion parameter, as realized by the EFT of Ref. [36] where the
diagrams of Fig. 1 each contributed to precisely one order in the energy density: LO or E1
is O(k6

F), NLO or E2 is O(k7
F), and NNLO or E3 is O(k8

F).
In extending these results to a finite system, the simplest approximation that can be

invoked is the local density approximation (LDA). In Ref. [33], the results for a uniform

system were used in the LDA to evaluate the Γ̃l and hence the energy through NNLO. We
simply quote the results here. The LO diagram [Fig. 1(a)] is the Hartree-Fock contribution,
which is purely local. Thus, it is an exact evaluation and Eq. (34) can be used directly for
the energy contribution:

EHF [ρ(x)] =

∫
d3x E1[ρ(x)] =

1

2

(ν − 1)

ν
C0

∫
d3x |ρ(x)|2 . (45)

The contributions to the energy from NLO and NNLO diagrams are computed in LDA by
simply integrating the corresponding uniform energy densities evaluated at the local density

11



[33]:

ELDA
c [ρ(x)] =

∫
d3x {E2(ρ0) + E3(ρ0)} |ρ0→ρ(x)

= b1
a2
s

2M

∫
d3x [ρ(x)]7/3

+
(
b2 a

2
s rs + b3 a

3
p + b4 a

3
s

) 1

2M

∫
d3x [ρ(x)]8/3 , (46)

where the dimensionless bk are

b1 =
4

35π2
(ν − 1)

(
6π2

ν

)4/3

(11− 2 ln 2) ,

b2 =
1

10π
(ν − 1)

(
6π2

ν

)5/3

,

b3 =
1

5π
(ν + 1)

(
6π2

ν

)5/3

,

b4 =

(
6π2

ν

)5/3 (
0.0755 (ν − 1) + 0.0574 (ν − 1)(ν − 3)

)
. (47)

The numerical constants in the last line of Eq. (47) were obtained by Monte Carlo integration
[36].

C. Including τ in Hartree-Fock Diagrams

The contributions to ELDA
c [ρ(x)] from the Hartree-Fock graphs containing the C2 and C ′

2

vertices [Figs. 1(i) and (j)], which have gradients, were approximately evaluated in the LDA
in Eq. (46) to obtain a functional of ρ alone. In the DFT formalism generalized to include
the kinetic energy density τ(x), however, we observe that they can be evaluated exactly in

terms of ρ(x) and τ(x) (for closed shells). These contributions to W̃3[J0, η0] can be simply
expressed in terms of gradients acting on the Kohn-Sham Green’s functions [cf. Eq. (32)]:

W̃3[J0, η0] = −
1

16

∫
d3x

[
C2 ν (ν − 1)

{
(∇1 −∇2)

2 + (∇3 −∇4)
2
}

+ 2C ′
2 ν (ν + 1) {(∇1 −∇2) · (∇3 −∇4)}

]

G0
ks(x4, x

+
2 )G0

ks(x3, x
+
1 )
∣∣∣
x1=x2=x3=x4=x

+ · · · (48)

Equation (48) is evaluated by carrying out the gradients and then setting all of the xi equal
to x. For this purpose, the replacement

G0
ks(x, x

′) −→ i
occ.∑

k

ψk(x)ψ∗
k(x

′) (49)
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can be made and, since in the end we integrate over x, we can partially integrate any term.
It is not difficult to write the resulting expressions in terms of ρ(x), τ(x), and a current
density j(x),

j(x) =
i

2
ν

occ.∑

k

[∇ψ∗
k(x)ψk(x)− ψ∗

k(x)∇ψk(x)] . (50)

The current density vanishes when summed over closed shells, leaving simple expressions for
the Hartree-Fock energy functionals:

EC2
[ρ(x), τ(x)] =

B2 a
2
s rs

2M

∫
d3x [ρ(x)τ(x) +

3

4
(∇ρ)2] , (51)

EC′

2

[ρ(x), τ(x)] =
B3 a

3
p

2M

∫
d3x [ρ(x)τ(x)−

1

4
(∇ρ)2] . (52)

The dimensionless constants B2 and B3 are given by

B2 = π
(ν − 1)

ν
, B3 = 2 π

(ν + 1)

ν
. (53)

The total contribution to the energy from NLO and NNLO diagrams is

Ec[ρ(x), τ(x)] =
b1 a

2
s

2M

∫
d3x [ρ(x)]7/3 + EC2

[ρ(x), τ(x)]

+EC′

2

[ρ(x), τ(x)] +
b4 a

3
s

2M

∫
d3x [ρ(x)]8/3 . (54)

Since this functional now has the semi-local τ(x) as one of its ingredients, it represents a step
beyond LDA, even though the contributions from Figs. 1(b), (g), and (h) are still evaluated
with the LDA prescription. The next step in the DFT/EFT program will be to develop
systematic expansions to these contributions in terms of ρ and τ .

For now, we carry out the DFT/EFT formalism in the effective action framework using
the hybrid functional with τ(x). The full effective action is given by

Γ̃[ρ, τ ] = Γ̃0[ρ, τ ] + Γ̃1[ρ, τ ] +
∞∑

k=2

Γ̃k[ρ, τ ] . (55)

We proceed to calculate the sources using Eqs. (39), (40), and (54) to NNLO; first J0(x) is

J0(x) =
δ

δρ(x)

(
Γ̃1[ρ, τ ] +

3∑

k=2

Γ̃k[ρ, τ ]

)
= −

δ

δρ(x)
(EHF[ρ] + Ec[ρ, τ ])

= −
(ν − 1)

ν

4π as
M

ρ(x)−
7

3
b1

a2
s

2M
[ρ(x)]4/3 −

8

3
b4

a3
s

2M
[ρ(x)]5/3

−
(
B2 a

2
s rs +B3 a

3
p

) 1

2M
τ(x) +

(
3B2 a

2
s rs −B3 a

3
p

) 1

4M
∇2ρ(x) , (56)

and then η0(x) is:

η0(x) = −
δ

δτ(x)
(EHF[ρ] + Ec[ρ, τ ]) = −

(
B2 a

2
s rs +B3 a

3
p

) 1

2M
ρ(x) . (57)
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The spatially dependent effective mass M∗(x) is therefore

1

2M∗(x)
=

1

2M
− η0(x) =

1

2M
+

[
(ν − 1)

4ν
C2 +

(ν + 1)

4ν
C ′

2

]
ρ(x) , (58)

where Eq. (44) has been used. An expression for the total binding energy (through NNLO)
follows by substituting for J0(x) and η0(x) in Eq. (29) and then using Eq. (55) and Eq. (15),

E[ρ(x), τ(x)] = ν
occ.∑

k

εk −

∫
d3x

{1

2

(ν − 1)

ν

4π as
M

[ρ(x)]2 +
4

3
b1

a2
s

2M
[ρ(x)]7/3

+
5

3
b4

a3
s

2M
[ρ(x)]8/3 +

(
3B2 a

2
s rs − B3 a

3
p

) 1

8M
[∇ρ(x)]2

+
(
B2 a

2
s rs +B3 a

3
p

) 1

2M
ρ(x)τ(x)

}
. (59)

The noninteracting case (Ci ≡ 0) uses J0(x) ≡ 0, η0(x) ≡ 0 and the first term in Eq. (59).
Leading order (LO) uses the first term in Eq. (56) and the first two terms in Eq. (59), and
so on for NLO and NNLO. An alternative expression for the energy is obtained by using the
second part of Eq. (29) followed by Eqs. (30), (55), and (15):

E[ρ(x), τ(x)] =

∫
d3x

{ 1

2M
τ(x) + v(x) ρ(x) +

1

2

(ν − 1)

ν

4π as
M

[ρ(x)]2

+
(
B2 a

2
s rs +B3 a

3
p

) 1

2M
ρ(x) τ(x) +

(
3B2 a

2
s rs − B3 a

3
p

) 1

8M
[∇ρ(x)]2

+ b1
a2
s

2M
[ρ(x)]7/3 + b4

a3
s

2M
[ρ(x)]8/3

}
. (60)

D. Comparison to Skyrme Hartree-Fock

A nucleus is a self-bound system, so the external potential v(x) = 0. To compare the
DFT/EFT functional to the conventional Skyrme energy density functional of Eq. (5), we
set the spin multiplicity ν = 4 and use Eq. (44) to rewrite Eq. (60) in terms of the Ci’s,
obtaining the energy density:

E [ρ(x), τ(x)] =
1

2M
τ(x) +

3

8
C0 [ρ(x)]2 +

1

16
(3C2 + 5C

′

2)ρ(x) τ(x) +
1

64
(9C2 − 5C

′

2)(∇ρ)2

+ b1
a2
s

2M
[ρ(x)]7/3 + b4

a3
s

2M
[ρ(x)]8/3 . (61)

We observe that we get all the terms of ESK(x) from Eq. (5) except for the one with coefficient
t3 and the spin-dependent terms, if we make the correspondence t0 ↔ C0, t1 ↔ C2 and
t2 ↔ C

′

2. This correspondence is not surprising since the Skyrme interaction was originally
motivated as a low-momentum expansion of the G matrix [25]. The two additional terms
in Eq. (61) of the form ρ(x)2+α come from correlations (i.e., terms beyond Hartree-Fock),
but there is no direct association with the t3 term in the Skyrme energy density, which
was originally motivated as a three-body contribution (so α = 1). However, it is clear that
the Skyrme functional is incomplete as an expansion; a direct connection to microscopic
interactions by matching to an EFT will include at least these additional terms.
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The generalization of the DFT/EFT to include spin and isospin dependence is straight-
forward. If one writes a complete set of four-fermion terms with σ and τ matrices in the
EFT Lagrangian, there are redundant terms because of Fermi statistics. In conventional
discussions of the Skyrme approach, this observation is typically cast in terms of antisym-
metrization of the interaction [18, 19]. For a path integral formulation of the DFT/EFT,
using Fierz rearrangement is a convenient alternative. We illustrate the procedure for the
leading spin dependence.

First consider just spin-1/2 (no isospin, so ν = 2). We expand the product of Grassmann

fields ψiψ
†
j (i and j are spin indices) in the complete basis of δij and σaij (a = {1, 2, 3}),

identifying the coefficients by contracting in turn with δij and σbji. The result, with minus
signs from interchanging Grassmann fields, is

ψiψ
†
j = −

1

2
(ψ†ψ)δij −

1

2
(ψ†σaψ)σaij . (62)

If we substitute this result into (ψ†ψ)2 = ψ†
i {ψiψ

†
j}ψj , we find

(ψ†ψ)2 = −
1

2
(ψ†ψ)2 −

1

2
(ψ†σψ)2 , (63)

or
(ψ†σψ)2 = −3(ψ†ψ)2 . (64)

(We could also start with (ψ†
iσ

a
ii′ψi′)(ψ

†
jσ

a
jj′ψj′) and obtain the same result with a bit more

effort). Therefore
C0(ψ

†ψ)2 + Cσ
0 (ψ†σψ)2 = (C0 − 3Cσ

0 )(ψ†ψ)2 (65)

and the single term C̃0(ψ
†ψ)2 with C̃0 ≡ C0 − 3Cσ

0 yields the same results for all diagrams
as the original two terms.

For the ν = 4 case with spin and isospin, we perform a similar procedure to find

ψiαψ
†
jβ = −

1

4
(ψ†ψ)δijδαβ −

1

4
(ψ†σaψ)σaijδαβ −

1

4
(ψ†τ bψ)δijτ

b
αβ −

1

4
(ψ†σaτ bψ)σaijτ

b
αβ . (66)

Substituting into any two of (ψ†ψ)2, (ψ†σψ)2, (ψ†τψ)2, and (ψ†στψ)2, we find two inde-
pendent relations, which can be solved simultaneously to find:

(ψ†τψ)2 = −2(ψ†ψ)2 − (ψ†σψ)2 (67)

(ψ†στψ)2 = −3(ψ†ψ)2 , (68)

which allow us to eliminate explicit dependence on τ matrices in favor of just two indepen-
dent couplings:

C0(ψ
†ψ)2 + Cσ

0 (ψ†σψ)2 + Cτ
0 (ψ†τψ)2 + Cστ

0 (ψ†στψ)2

= (C0 − 2Cτ
0 − 3Cστ

0 )(ψ†ψ)2 + (Cσ
0 − C

τ
0 )(ψ†σψ)2 . (69)

This agrees (of course) with the usual discussion in terms of antisymmetrized interactions
(e.g., see [18] or [19]). The choice to eliminate the τ terms is purely conventional. The
convention with Skyrme interactions is to choose the independent couplings to be ti and xi,
which multiply terms in the effective interaction in the combination ti(1 + xiPσ), with Pσ
the spin exchange operator. Extending to more derivatives and the spin-orbit (and tensor)
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terms follows systematically in the EFT approach, but introduces many more constants;
complete sets of contact terms with more derivatives in the EFT Lagrangian can be found in
Refs. [52] and [53]. The proliferation of constants leads to a clash of philosophies between the
minimalist, phenomenological approach (use as few terms as possible), which is necessarily
model dependent, and the model-independent EFT approach (use a complete set of terms).

The similarities of the successful Skyrme functional and the DFT functional for a dilute
Fermi gas prompts an analysis of typical Skyrme parameters as effective range parameters.
One can use the association of the ti’s and the Ci’s along with numerical values from suc-
cessful Skyrme parameterizations (e.g., Ref. [21]) to estimate “equivalent” values of as, rs,
and ap. We find that as ≈ −2–3 fm, which is about the inverse pion mass and is much
smaller than the large, fine-tuned values of the free-space nucleon-nucleon interaction (how-
ever, some Skyrme parameterization have an “equivalent” as of 5 fm or larger). However,
kFas is still significantly larger than unity inside a nucleus, which precludes a perturbative
dilute expansion. Interestingly, the equivalent rs and ap values have magnitudes consistent
with what one might expect from the nuclear hard-core radius (with ap < 0), leading to kFrs
and kFap less than unity.

III. RESULTS FOR DILUTE FERMI SYSTEM IN A TRAP

In this section, we present numerical results for the dilute Fermi system comprised of a
small number of fermions confined in a harmonic oscillator trap. We compare the nature of
the convergence of the EFT in a finite system both qualitatively and quantitatively to the
analysis done purely in the LDA [33], which means the effect of treating the Hartree-Fock
contributions at NNLO [Fig. 1(i) and (j)] exactly.

A. Kohn-Sham Self-Consistent Procedure

We restrict our calculations to finding the Kohn-Sham orbitals for closed shells, so the
density and potentials are functions only of the radial coordinate r ≡ |x|. Note that the
basic procedure is the same one used for closed-shell nuclei in Skyrme-Hartree-Fock [18],
even though the DFT/EFT can include correlations to any order. The Kohn-Sham iteration
procedure is as follows:

1. Start by solving the Schrödinger equation with the external potential profile v(r) for
the lowest A states (including degeneracies) to find a set of orbitals and Kohn-Sham
eigenvalues {ψk, εk}.

2. Compute the density and kinetic energy density from the orbitals:

ρ(r) =

A∑

k=1

|ψk(x)|2 , (70)

τ(r) =
1

4π

∫
dΩ τ(x) =

1

4π

A∑

k=1

∫
dΩ |∇ψk(x)|2 . (71)
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3. Using Eqs. (56)–(57), find J0(r) and η0(r). Evaluate the local single-particle potential

vs[ρ(r), τ(r)] ≡ vs(r) ≡ v(r)− J0(r) (72)

at the chosen level of approximation (e.g., NLO) and the “effective” mass :

1

2M∗(r)
=

1

2M
− η0(r) . (73)

4. Solve the Skyrme-type Schrödinger equation for the lowest A states (including degen-
eracies), to find {ψk, εk} as before:

[−∇
1

2M∗(r)
∇ + vs(r)]ψk(x) = εkψk(x) . (74)

5. Repeat steps 2.–4. until changes are acceptably small (“self-consistency”). In practice,
the changes in the density are “damped” by using a weighted average of the densities
from the (n− 1)th and nth iterations:

ρ(r) = βρn−1(r) + (1− β)ρn(r) , (75)

with 0 < β ≤ 1.

This procedure has been implemented for dilute fermions in a trap using two different
methods for carrying out step 4. The Kohn-Sham single-particle equations are solved in
one approach by direct integration of the differential equations and in the other approach
by diagonalization of the single-particle Hamiltonian in a truncated basis of unperturbed
harmonic oscillator wavefunctions. The same results are obtained to high accuracy. [Note
that other methods used for Skyrme-type equations, such as the conjugate-gradient method
[54], can also be directly applied.]

B. Fermions in a Harmonic Trap

The interaction through NNLO is specified in terms of the three effective range parameters
as, rs, and ap. For the numerical calculations presented here, we consider the natural case
of hard-sphere repulsion with radius R, in which case as = ap = R and rs = 2R/3, and also
the case with ap = 2as, so we can emphasize the effect of M∗(r)/M significantly less than
unity.

Lengths are measured in units of the oscillator parameter b ≡
√

~/Mω, masses in terms
of the fermion mass M , and ~ = 1. In these units, ~ω for the oscillator is unity and the
Fermi energy of a non-interacting gas with filled shells up to NF is EF = (NF + 3/2). The
total number of fermions A is related to NF by

A =
ν

6
(NF + 1)(NF + 2)(NF + 3) . (76)

Since we have only considered spin-independent interactions, our results are independent of
whether the spin degeneracy ν actually originates from spin, isospin, or some flavor index.

With interactions included, single-particle states are labeled by a radial quantum number
n, an orbital angular momentum l with z-component ml, and the spin projection. The radial
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TABLE I: Energies per particle, averages of the local Fermi momentum kF, and rms radii for

sample parameters and particle numbers for a dilute Fermi gas in a harmonic trap. See the text

for a description of units. The scattering length is fixed at as = 0.16 and the effective range is set

to rs = 2as/3 when ap 6= 0. Results with the DFT functional including τ are marked “τ–NNLO.”

ν NF A ap E/A 〈kF〉
√
〈r2〉 approximation

2 7 240 – 7.36 3.08 2.76 LO

2 7 240 – 7.51 3.03 2.81 NLO (LDA)

2 7 240 0.00 7.52 3.02 2.82 NNLO (LDA)

2 7 240 0.16 7.66 2.97 2.87 NNLO (LDA)

2 7 240 0.16 7.65 2.97 2.87 τ–NNLO (LDA)

2 7 240 0.32 8.33 2.76 3.10 NNLO (LDA)

2 7 240 0.32 8.30 2.77 3.09 τ–NNLO (LDA)

functions depend only on n and l, so the degeneracy of each level is ν×(2l+1). The solutions
take the form (times a spinor, which is suppressed)

ψnlml
(x) = Rnl(r) Ylml

(Ω) =
unl(r)

r
Ylml

(Ω) , (77)

where the radial function unl(r) satisfies

[
−

1

2M∗(r)

d2

dr2
−
dη0

dr

(
1

r
−

d

dr

)
+ vs(r) +

l(l + 1)

2M∗(r)r2

]
unl(r) = εnlunl(r) , (78)

and the unl’s are normalized according to

∫ ∞

0

|unl(r)|
2 dr = 1 . (79)

Thus the density is given by

ρ(r) = ν
occ.∑

nl

(2l + 1)

4π
|Rnl(r)|

2 , (80)

and the kinetic energy density is given by [54]

τ(r) =
ν

4π

occ.∑

nl

(2l + 1)

[(
dRnl

dr

)2

+
l(l + 1)

r2
|Rnl(r)|

2

]
. (81)

The interactions are sufficiently weak that the occupied states are in one-to-one correspon-
dence with those occupied in the non-interacting harmonic oscillator potential.

C. Numerical Results

Here we compare density distributions at zero temperature for the LDA analysis [33]
to those from evaluating Figs. 1(i) and (j) exactly at NNLO (where the differences first
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FIG. 2: NNLO Kohn-Sham density distributions for a dilute gas of fermions in a harmonic trap

with degeneracy ν = 2 filled up to NF = 7, which implies there are 240 particles in the trap. The

scattering length is as = 0.16 and the effective range is rs = 2as/3. Results for two values of ap
are compared for the LDA ρ-only functional (ρ–DFT) and with τ (ρτ–DFT).
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FIG. 3: Deviation of ρτ–DFT from ρ–DFT results at NNLO for the same systems as in Fig. 2.
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FIG. 4: NNLO Kohn-Sham kinetic-energy-density distributions for the same systems as in Fig. 2.

The upper three curves are for ap = as and the lower three curves are for ap = 2as.

appear in the present analysis). This comparison obviously makes sense only if at least
one of rs and ap is non-zero. We choose 240 particles as a representative example (other
numbers of particles give qualitatively similar results). Densities at different orders in the
DFT expansion were shown in Ref. [33]. Results for the energy per particle E/A, average
Fermi momentum 〈kF〉 and the rms radius are given in Table I.

In Fig. 2, we compare the densities at NNLO in the Kohn-Sham formalism with ρ-only
functionals (the LDA calculation from Ref. [33]) to the same system with the ρτ functionals.
For hard-sphere scattering (for which ap = as), the density curves are almost indistinguish-
able. If we plot the difference on an expanded scale (see Fig. 3), we can see a small amplitude
oscillation. The close agreement is not surprising given that the source of the difference is
the NNLO Hartree-Fock terms, so the difference itself is higher order in the EFT expansion
(note that the ρ–DFT and ρτ–DFT NNLO energies in Table I differ only by 0.01). We can
magnify the difference by considering ap = 2as, which multiplies the corresponding Hartree-
Fock term by a factor of eight (which also implies that the C ′

2 coefficient is unnaturally
large). For this case, the difference in Fig. 2 is visible and significant oscillations are seen in
Fig. 3. The increased oscillation is analogous to the difference between Thomas-Fermi and
Kohn-Sham DFT densities (shown in Ref. [33]), although not as dramatic. The explanation
is also analogous: the ρτ–DFT captures more non-locality into the DFT functional.

The kinetic energy densities for these cases are shown in Fig. 4. When calculated from
the Kohn-Sham wave functions, τ(r) is quite similar for the ρ-only and ρτ calculations. Also
shown in this figure is the leading contribution from the semiclassical approximation, which
reproduces the “exact” kinetic energy densities except near the origin.

Only in the ρτ case is the effective mass M∗(r) different from unity; it is shown in Fig. 5
for the two values of ap. The values close to the origin are in the range of those obtained in
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FIG. 5: NNLO Kohn-Sham effective mass distributions for the same systems as in Fig. 2. Results

for two values of ap are shown.

Skyrme functionals fit to nuclear data. In those functionals, the value of M∗ is associated
with the single-particle energy levels. This correspondence is seen in the single-particle
energy spectra in Fig. 6. If we take the uniform limit (with the external potential turned
off), the single-particle energies for momentum k differ according to

ερ
k
− ερτ

k
= (B2a

2
srs +B3a

3
p)

(k2
F − k2)

2M
ρ . (82)

Thus, for positive rs and ap, the ρτ levels will always lie lower except at the Fermi surface
(where they must be equal).

This comparison demonstrates how the Kohn-Sham formalism can be misinterpreted.
Even though the single-particle energies differ significantly, they are not observables. Indeed,
the true bulk observables calculated in the DFT framework, those in Table I, are barely
distinguishable. One could ask whether the single-particle levels in some representation are
“better” than in other representations. In particular, they can be compared to the energy
spectrum corresponding to the poles of the exact Green’s function, which can be constructed
in terms of the Kohn-Sham Green’s function [48, 55]. If this construction is carried out in
the present approximations for both the ρ-only and the ρτ formalisms, the ρτ single-particle
spectrum is obtained in both cases [55]. It is not clear from the present calculation how
close the full and Kohn-Sham spectra would be if the LDA were relaxed [e.g., for Fig. 1(b)].
It would be useful to add spin-orbit interactions and then to study Kohn-Sham spin-orbit
splittings near the Fermi surface, since such splittings are commonly fit in mean-field models.
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FIG. 6: Comparison of selected single-particle energy spectra for the same systems as in Fig. 2.

D. Power Counting and Convergence

The effective field theory approach allows us to estimate contributions to the energy.
At each successive order in the EFT expansion, the low-energy constants (LEC’s) can be
estimated using naive dimensional analysis, or NDA [33]. In the case of a short-range force
with a natural scattering length, the underlying momentum scale Λ ∼ 1/R, where R is the
range of the potential, is the basic ingredient in the NDA. The estimate of two-body Hartree-
Fock energy contributions from a given term in the Lagrangian can be found by replacing
ψ†ψ by the average density (and including an appropriate spin factor) and the coefficient
by the natural estimate C2i ∼ 4π/MΛ2i+1 [36]. As an example, the NDA estimate of the
Hartree-Fock energy per particle at LO was computed from Eq. (45) as :

(
EHF

A

)

NDA

≈
1

2

(ν − 1)

ν

4π

MΛ
〈ρ(x)〉 , (83)

with Λ = 1/R = 1/as for a hard-sphere potential. The Thomas-Fermi result can be used
to find the average density, or one might just take the actual computed average value (the
results will differ by much less than the uncertainty in the estimate). The NLO estimate was
found by multiplying the LO result by 〈kF〉as, where 〈kF〉 is the average Fermi momentum
[33]. At NNLO, we have three terms. The ρ8/3 LDA term was estimated by multiplying the
LO result by(〈kF〉as)

2, and the other two terms (ρ τ and ∇ρ) arising from Hartree-Fock at
that order was estimated directly as in the case of LO (using 〈ρτ〉 ≈ 〈ρ〉〈τ〉).

In Figs. 7 and 8, estimates and actual contributions are shown for ν = 4, A = 140,
as = 0.10 (for which 〈kFas〉 ≈ 0.24) and for ν = 2, A = 240, as = 0.16 (for which 〈kFas〉 ≈
0.5). Square symbols denote estimates based on naive dimensional analysis, with error
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bars indicating a 1/2 to 2 uncertainty in the estimate. Actual contributions to the energy
per particle from each of the orders are shown as round symbols, i.e., the actual NLO
contribution is |ENLO − ELO|/A. At NNLO, we plot estimated contributions from the ρ8/3

LDA, ρ τ , and gradient terms separately. The latter gives a very small contribution consistent
with its NDA estimate, and it has been multiplied by ten in Figs. 7 and 8 to fit them on
the graphs. The two sets of estimates and results correspond to ap = as (hard sphere) and
ap = 0.

We see from Figs. 7 and 8 that the actual results for LO, NLO and NNLO agree well
with NDA estimates, including the new gradient contributions, with one exception. The
exception is the ρ8/3 LDA estimate for the ν = 2 system, which greatly overestimates the
actual contribution at that order due to an accidental cancellation when ν = 2 between
the two terms in the b4 coefficient in Eq. (47) [33]. In general, however, we can use these
estimates to reliably predict the uncertainty in the energy per particle from higher orders.

While it’s clear that nuclei are not perturbative dilute Fermi systems with natural free-
space scattering lengths, there is phenomenological evidence that power counting can apply
to energy functionals that are fit to bulk nuclear properties. Phenomenologically successful
functionals, both of the Skyrme type and covariant, have Hartree terms that are consistent
with Georgi-Manohar NDA for a chiral low-energy theory [56, 57, 58]. This involves power
counting with two scales: the pion decay constant fπ and an underlying scale for short-
range physics Λ, which empirically (for these functionals) is around 600MeV. (Equivalently,
there is an additional large dimensionless coupling g ∼ Λ/fπ that enters in a well-prescribed
manner). Thus the functionals do take the form of a density expansion (with parameter
ρ/f 2

πΛ) as well as a gradient expansion, with the same hierarchy as illustrated here. A major
goal of future investigations will be to elucidate the nature of the density expansion for finite
nuclei and to connect it to the underlying chiral EFT.

IV. SUMMARY

In this paper, the EFT-based Kohn-Sham density functional for a confined, dilute Fermi
gas was extended by incorporating the kinetic-energy-density τ(x) into the formalism. The
generating functional is constructed by including, in addition to a source J(x) coupled to
the composite density operator ψ†ψ, another source η(x) coupled to the (semi-local) kinetic
energy density operator ∇ψ† · ∇ψ. A functional Legendre transformation with respect to
the sources yields an effective action of the kinetic energy density τ as well as the fermion
density ρ. This construction also serves as a prototype for including additional densities
currents (such as separate proton and neutron densities or a spin-orbit current).

This extension sets the stage for the construction of energy functionals and Kohn-Sham
equations that go systematically beyond the local density approximation (LDA). As a first
step, we included the exact Hartree-Fock (HF) contribution at NNLO for a natural dilute
Fermi system but treated non-HF contributions in LDA. This exact HF contribution provides
explicit dependence on τ and on the gradient of the density, unlike the LDA. The EFT
expansion for a confined, finite system with natural effective range parameters is controlled
by those parameters (as, rs, ap, . . . ) times an average Fermi momentum and by the gradient
of the density. Thus the expansion is perturbative in the sense of being a density expansion
but is not perturbative in an underlying potential. (This is clear since our prototype system
is hard spheres, which yields infinities even in first-order perturbation theory!) An error
plot of contributions to the energy per particle versus the order of the calculation showed
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that we can reliably estimate the truncation error in a finite system, including the gradient
terms.

The ground-state energy functional and Kohn-Sham single-particle equations constructed
here take the same form as those in Skyrme Hartree-Fock calculations (not including the
spin-orbit contribution, which can be added with a similar generalization). There is work
supporting the Skyrme (and also covariant [56]) mean-field energy functionals as density
expansions. Low-energy effective theories of QCD are expected to have a type of power
counting. As shown in Ref. [57], power counting in the energy functional based on chiral
naive dimensional analysis is fully consistent with phenomenological parametrizations. The
value of including the kinetic energy density as a functional variable is not conclusive in the
present example, but it does lead to a single-particle spectrum closer to that of the exact
Green’s function. In general, summing more nonlocalities without decreasing the numerical
efficiency of the calculation is a plus.

Even in the simplest low-density expansion, there are contributions at all powers of the
Fermi momentum, which means fractional powers of the density. In the Skyrme parametriza-
tion, there is only one such term. This is presumably a balance between phenomenological
accuracy and a desire to maximize predictive power through limiting parameters. For repro-
ducing bulk properties of stable nuclei, the Skyrme functional is only sensitive to a relatively
small window in density, which allows significant freedom for a phenomenological parameter-
ization. The future challenge will be to see if additional terms motivated by power counting,
which may become important for extrapolating far from stability, can be determined.

The immediate next steps are to develop a derivative expansion to evaluate diagrams
such as the NLO “beachball” diagram beyond LDA and to test it for convergence, and to
generalize the DFT formalism to include pairing. Work is in progress on these extensions,
which will be directly relevant for nuclear applications [12]. In addition, in order to adapt
the density functional procedure to chiral effective field theories with explicit pions, we will
need to extend the discussion to include long-range forces. Kaiser, Weise, and collaborators
have already generated functionals of the Skyrme type using free-space chiral perturbation
theory together with the density matrix expansion of Negele et al. [59]. It is not clear that
the power counting is consistent in those calculations, but future development along these
lines is certainly warranted. Finally, a systematic solution to the large scattering length
problem for trapped atoms also remains a challenge.
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